
Docker: The fundamentals
Gianluca Arbezzano

2

Copyright c© 2016 Gianluca Arbezzano
PUBLISHED BY THUMPFLOW

SCALEDOCKER.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License
(the “License”). You may not use this file except in compliance with the License. You may
obtain a copy of the License at http://creativecommons.org/licenses/by-nc/3.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.
Last release May 28, 2017v1.0

http://creativecommons.org/licenses/by-nc/3.0

Contents

1 About the book . 5

1.1 Audience 5

1.2 Mission 5

1.3 This Chapter 6

2 Containers: why we are here . 7

2.1 Isolation and Virtualization 7

2.2 The Reason 9

2.3 Linux Container in practice 9

3 Docker: The Fundamental . 13

3.1 Introduction 13

3.2 Install Docker on Ubuntu 16.04 14

3.3 Install Docker on Mac 15

3.4 Install Docker on Windows 16

3.5 Run your first HTTP application 16

3.6 Docker engine architecture 17

3.7 Image and Registry 18

3.8 Docker Command Line Tool 22

3.8.1 run . 23

3.8.2 ps . 24

3.8.3 exec . 25

4

3.8.4 logs . 25

3.8.5 push and pull . 25

3.8.6 tags . 25

3.8.7 inspect . 25

3.8.8 start, stop, restart, kill . 26

3.8.9 save, import . 26

3.9 Volumes and File Systems 26

3.10 Network and Links 28

3.11 In the end 30

4 Biography . 31

1. About the book

"Docker in production - Drive your boat like a Captain". You can visit scaledocker.com to
keep in touch with info about the status of the book, new chapters distributed free an so on.

Docker 1.12 and Swarmkit opened the doors of your production environment and now
you can manage it directly with Docker. It means that you need to care about distribution,
monitoring, security, rollback and a lot of other topics that you are usually not managing
in a development environment.

The general structure of the book is:

1. Containers why we are here

2. Docker the fundamentals

3. Docker over the engine

4. Distributed systems with SwarmKit

5. Road to production with Docker 1.12 and Swarm Mode

6. Monitoring, logging and high availability

7. Swarm, Mesos, Kubernetes an ocean of containers

8. Networking

9. Security

10. Extend Docker with API and events

1.1 Audience

Are you a developer or an IT Admin who has a basic knowledge of docker but is looking
to understand how to manage a multi host docker infrastructure or thinking about how to
manage a production environment with docker? Then this book is for you.

1.2 Mission

The mission of this book is to describe the new orchestration framework embedded in
Docker 1.12 so that you can get started with Docker’s clusters the right way and build to a
robust production environment.

http://scaledocker.com

6 Chapter 1. About the book

Manage a production environment is not easy microservices and distributed systems makes
the ecosystem different. In this book we will how our production environment changed
with there new methodologies.

1.3 This Chapter

This chapter is an extract from the entire book "Docker in Production - Driver your boat
like a Captain". It’s distributed free to receive opinions and ideas. Like Docker Captain I
am active into the community in different ways as a speaker, writer and so on. This book
is a good method to share my experience and my passion about automation and distributed
system.

https://www.docker.com/community/docker-captains

2. Containers: why we are here

Reviewers: Arianna Scarcella, Jenny Burcio

It is change, continuing change, inevitable change, that is the dominant factor
in society today. No sensible decision can be made any longer without taking
into account not only the world as it is, but the world as it will be... This, in
turn, means that our statesmen, our businessmen, our every man must take on a
science fictional way of thinking

Asimov, 1981

2.1 Isolation and Virtualization

I can see clearly two kind of invention: the ones that allow people to do something they
couldn’t do before and the ones that let them do something better. Fire, for example, gave
people the chance to cook food, push away wild beasts and warm themselves up during
cold nights. Many years later, electricity let people warm their houses just by pushing a
button. After wheels discovery people began to travel and to trades goods, but was only
with car’s invention that they might do it faster and efficiently. Similarly, the web creates a
huge network, able to connect people all over the world, web application gave people tools
to use and customise such a complex system. Under this perspective, container is one of
the main revolution of the last years, a unique tool that helps with app management and
development. Let’s discover something more about the real story of containers.

We have not a lot of documentation about why Bill Joy 18th March 1982 added chroot
into the BSD probably to emulate him solutions and program is an isolated root. That’s
was amazing but not enough few years later in 1991 Bill Cheswick extended chroot
with security features provided by FreeBSD and implemented the “jails” and in 2000
he introduced what we know as the proper jails command now our chroots can not be
anything, anywhere out of themself. When you start a process in a chroot the PID is one
and there is only that process but from outside you can see all processes that are running in
a chroot. Our applications can not stay in a jail! They need to communicate with outside,
exchange information and so on. To solve this problem in 2002 in the kernel version 2.4.19
a group of developers like Eric W. Biederman, Pavel Emelyanov introduced the namespace
feature to manage system resources like network, process and file system.

This is just a bit of history about how the ecosystem spin up, in the end of this chapter we
will try to understand how why Docker arrives on the scene, but the main goal of this book
is on another layer and on another complexity, we are here to understand how manage

8 Chapter 2. Containers: why we are here

all this things in cloud and how to design a distributed system but you know the past is
important to build a solid future.

All this great features are now popular under the name of container, nothing really news
and this is one of the reason about why all this things are amazing! They are under the
hood from a while! Solid and tested feature put together and made usable.

Nothing to say about the importance for a system to being isolated: isolation helps us
to usefully manage resources, security and monitoring, in the best way, false problems
creation in specific applications, often not even related to our app.

The most common solution is virtualization: you can use an hypervisor to create virtual
server in a single machine. There are different kind of virtualization:

• Full virtualization

• Para virtualization like Virtual Machine, Xen, VMware

• Operating System virtualization like Containers

• Application virtualization like JVM

The main differences between them is how they abstract the layers, application, processing,
network, storage and also about how the superior level interact with underlying level. For
example into the Full virtualization the hardware is virtualized, into the para virtualization
not.

Container is an operation-system-level virtualization. The main difference between Con-
tainer and Virtual Machine is the layer: the first works on the operating system, the second
on the hardware layer.

When we speak about container we are focused on the application virtualization and on a
specific feature provided by the kernel called Linux Containers (LXC): what we do when

2.2 The Reason 9

we build containers is create new isolated Linux systems into the same host, it means
that we can not change the operation system for example because our virtualization layer
doesn’t allow us to run Linux containers out of Linux.

2.2 The Reason

Revolutions are not related to a single and specific event but come from multiple movements
and changes: Container is just a piece of the story.

Cloud Computing allowed us to think about our infrastructure as an instable number of
servers that can scale up and down, in a reasonable short amount of time, with less money
and without the investment requested to manage a big infrastructure made of more than one
datacenter across the world. As a consequence, applications that had been in a cellar, now
are on Amazon Web Service, with a load balancer and maybe different availability zone.
This allowed little teams and medium companies, without datacenter and infrastructures, to
think about concept like distribution, high availability, redundancy. Evolution never stop.

Once our applications are running in few virtual machines, our business will grow up so
we start to scale up and down this servers to serve all our users. We experimented few
benefits but also a lot of issues related, for example, to the time requested for managing this
dynamism; moreover big applications are usually more expensive to scale. Our application
can only grow but the deploy can be really expensive. We discovered that the behavior
of an application is not the same across all of our services and entrypoint, because few of
them receive more traffic that others. So, we started to split our big applications in order
to make them easy to scale and monitor. The problem was that, in order to maintain our
standard, we need to find a way to keep them isolated, safe and able to communicate each
others.

The Microservices Architecture arrived and companies like Netflix, Amazon, Google and
others counts hundreds and hundreds of little and specific of services that together work to
serve big and profitable products.

Netlix is one of first companies that started sharing the way they build Netlix.com: with
more that 400 microservices, they managed feature like registration, streaming, rankins
and all what the application provides.

At the moment, Containers are the best solution for managing a dense and dynamic
environment with a good control, security and for moving your application between
servers.

2.3 Linux Container in practice

Nothing new under the sun, Wikipedia marks 2008 as the starting date for the LXC (Linux
Containers) project. Joe Beda, Senior Software Engineer in Google, speaks about more

10 Chapter 2. Containers: why we are here

than 10 years of success with containers in production, underling that now everything is
running inside a container. What Docker did, and still does, is make container friendly and
provide a big ecosystem of tools to build, ship and run containers. Before speaking about
Docker, we need to know what a Linux Container is in practice.

When we think container, we are using some features provided by the kernel cgroups,
namespaces are really important. Control group (cgroup) limit and isolate resources usage
from processes like memory, swap, cpu, i/o, networks. It also provide other features to
control, monitor and prioritize cgroup and also process what they contain. For this reason,
a good practice consist in paring one process to each container, in order to have a complete
control on what the process does. Namespace wraps a resource that make it available
for a process or for a group of them that use that namespace. There are different kind of
namespace PID, network, IPC, mount, users and others.

Docker container uses cgroup to make a container isolated and namespace as access control
to make it safe.

cgroups associate a tasks with a set of resources as:

• memory to set a memory usage limit.

• cpu to use the scheduler and to give CPU access to a cgroup.

• cpuset to assign individual CPUs and memory nodes.

• cpuacct to get automatic reports about CPU usage in a cgroup.

• devices to allow or deny access to a specific device.

• blkio to set I/O limits from a block device as disks or USB.

• freezer to suspend or resume a tasks in a cgroup.

• ns to use namespace inside a cgroup.

• net_cls to allow Linux traffic control to identity packets from a cgroup

• net_prio to set the priority of the network traffic.

We know that everything in Linux is a file, a cgroup is also a bunch of files located in
/sys/fs/cgroup. Manage cgroup as files is not easy and it’s in practice impossible to maintain.
For this reason there are tools that allow us to manage cgroup for example:

• libcgroup is a libray that abstract the control group kernel feature and it contains
some tools like cgcreate, cgclassify.

• cgmnager is a combination of one daemon and a client (cgm) to manage cgroups.

2.3 Linux Container in practice 11

You can install libcgroup in your Ubuntu 16.10 with the command:

$ sudo apt-get install cgroup-bin
$ ls -lsa /sys/fs/cgroup
total 0
0 drwxr-xr-x 14 root root 360 gen 14 20:47 .
0 drwxr-xr-x 10 root root 0 gen 21 15:18 ..
0 dr-xr-xr-x 6 root root 0 gen 21 15:18 blkio
0 drwxr-xr-x 2 root root 60 gen 14 20:47 cgmanager
0 lrwxrwxrwx 1 root root 11 gen 14 20:47 cpu -> cpu,cpuacct
0 lrwxrwxrwx 1 root root 11 gen 14 20:47 cpuacct -> cpu,cpuacct
0 dr-xr-xr-x 6 root root 0 gen 21 15:18 cpu,cpuacct
0 dr-xr-xr-x 3 root root 0 gen 21 15:18 cpuset
0 dr-xr-xr-x 6 root root 0 gen 21 15:18 devices
0 dr-xr-xr-x 4 root root 0 gen 21 15:18 freezer
0 dr-xr-xr-x 3 root root 0 gen 21 15:18 hugetlb
0 dr-xr-xr-x 7 root root 0 gen 21 15:18 memory
0 lrwxrwxrwx 1 root root 16 gen 14 20:47 net_cls -> net_cls,net_prio
0 dr-xr-xr-x 3 root root 0 gen 21 15:18 net_cls,net_prio
0 lrwxrwxrwx 1 root root 16 gen 14 20:47 net_prio -> net_cls,net_prio
0 dr-xr-xr-x 3 root root 0 gen 21 15:18 perf_event
0 dr-xr-xr-x 6 root root 0 gen 21 15:18 pids
0 dr-xr-xr-x 7 root root 0 gen 21 15:18 systemd

Into the directory we can see all control groups listed before. At this point we can try to
create our first cgroup:

$ sudo cgcreate -a user -g memory,cpu:groupname

This command crateas a cgroup called foo with two control group attached memory and
cpu. We can verify that now the is a foo directory into the cpu and memory directories.

$ ls -lsa /sys/fs/cgroup/cpu/foo/
total 0
0 drwxr-xr-x 2 gianarb root 0 gen 21 15:53 .
0 dr-xr-xr-x 7 root root 0 gen 21 15:53 ..
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cgroup.clone_children
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cgroup.procs
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.stat
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_all
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_percpu
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_percpu_sys
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_percpu_user
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_sys
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpuacct.usage_user
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cpu.cfs_period_us
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cpu.cfs_quota_us
0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 cpu.shares
0 -r--r--r-- 1 gianarb root 0 gen 21 15:53 cpu.stat

12 Chapter 2. Containers: why we are here

0 -rw-r--r-- 1 gianarb root 0 gen 21 15:53 notify_on_release
0 -rw-r--r-- 1 root root 0 gen 21 15:53 tasks

We can run command into the cgroup for example:

$ cgexec -g memory,cpu:groupname/foo sleep 5

You can change the limits of your resources, our case CPU and memory in a very easy
way, if you read the content of /sys/fs/cgroup/memory/foo/memory.limit_in_bytes you get
the current maximum amount of memory that a task can use into the foo cgroup. You can
change this limit with

echo 20000000 > /sys/fs/cgroup/memory/groupname/foo/memory.limit_in_bytes

To remote the cgroup you can just exec:

sudo cgdelete -g memory,cpu:foo

Now you can verify yourself the foo’s directories expired.

This example was completly no-sense and semplicistic but I noticed that for a lot of
Docker users all the lowel level mechanisms are just a magic black box and usually run in
poduction something that you don’t understand it’s not a wise decision. Now that you have
a very high level idea about what there is above, it’s time to see what Docker really means.

3. Docker: The Fundamental

Reviewers: Gareth Pelly, Thomas Shaw, Jenny Burcio, Stefano Rosso

Can I jump over two or three guys like I used to? No. Am I as fast as I used to
be? No, but I still have the fundamentals and smarts. That’s what enables me
to still be a dominant player. As a kid growing up, I never skipped steps. I
always worked on fundamentals because I know athleticism is fleeting.

Kobe Bryant

3.1 Introduction

Get ready to explore the big Docker world. It’s time to understand why Docker created
a big revolution and containers are the current IT revolution. Docker is an open source
project to build, ship and run containers. In this chapter we will focus on the Docker
Engine because it is the core application that helps us to create and manage the Docker
container. Docker Engine is open source and it’s written in Golang. With more than
27.000 commits and 1.500 contributors, it can be considered one of the biggest open source
projects worldwide.

Figure 3.1: Docker container virtualization by Docker Inc.

14 Chapter 3. Docker: The Fundamental

This diagram shows, in broad terms, where the Docker Engine works: it’s located between
the operating system and our applications. Docker Containers sit on top of Linux so we
need a Linux kernel to work with Docker. My local environment is a MacBook Pro and a
lot of examples that we will see in this book are run on my laptop with a virtual machine
managed by VirtualBox.

3.2 Install Docker on Ubuntu 16.04

This book is interactive, you can read it but also try yourself and for this reason has
send start from how install Docker on your laptop. It is distributed on different Linux
distribution, we can start from Ubuntu with few simple steps:

1. Update your repositories

Listing 3.1: setup apt

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates
$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80

--recv-keys 58118E89F3A912897C070ADBF76221572C52609D

2. If the file doesn’t exist, create it with your favourite editor

$ /etc/apt/sources.list.d/docker.list

3. Copy this line into the file

$ deb https://apt.dockerproject.org/repo ubuntu-xenial main

4. Update APT index

$ sudo apt-get update

5. Install Docker

$ sudo apt-get purge lxc-docker
$ sudo apt-get install linux-image-extra-$(uname -r)

linux-image-extra-virtual docker-engine

3.3 Install Docker on Mac 15

6. Start the docker daemon

$ sudo service docker start

7. Start your first container

$ sudo docker run hello-world

Docker usually provides good documentation to install on Linux but if you have a MacBook
or use Windows, the next two paragraphs will show you how to install1 it on your computer.

3.3 Install Docker on Mac

Docker for Mac2 is a tool which provides a better experience with the Docker Engine
in OSX. It’s a simple dmg, you can download directly from the site and install in your
MacBook.

1https://docs.docker.com/engine/installation/
2https://docs.docker.com/docker-for-mac/

16 Chapter 3. Docker: The Fundamental

When it’s up and running you can enjoy Docker in your terminal. Just open it and run

$ sudo docker run hello-world

3.4 Install Docker on Windows

The same concept applies for Windows in order to have a great experience in your develop-
ment environment. You download Docker for Windows3, install it as a classic application
and you can start to play with Docker.

Remember these two solutions don’t change the requirement that Docker has to run with
Linux. Both Docker for Mac and Docker for Windows use a virtual machine and a common
layer to make your experience with Docker exactly as with Linux.

3.5 Run your first HTTP application

Micro4 is a service written in Golang, a very small application which provides two HTTP
entrypoints. The index show the container’s ip and there is a /health call to check if your
service works as expected. It runs on port 8000.

$ docker run -p 8000:8000 gianarb/micro:1.0.0

3https://docs.docker.com/docker-for-windows/
4https://github.com/gianarb/micro/releases/tag/1.0.0

3.6 Docker engine architecture 17

‘run’ is one of the most important commands that Docker Engine provides. It starts a new
container from an image, in this case gianarb/micro version 1.0.0. ‘-p’ is an option to
forward a port from the container to the host, in this case it allows us to contact our HTTP
server. Now you can open your browser and see the site on localhost:8000.

3.6 Docker engine architecture

Figure 3.2: Docker archteture by Docker Inc.

18 Chapter 3. Docker: The Fundamental

We saw something about images, containers, command line and daemon but before
continuing we need to understand how Docker Engine is designed in order to use the same
terminology and also to have an idea about the architecture. Docker is made of two main
parts:

• An HTTP server, in practice the backend that provides a REST API that you can use
to integrate your applications with the engine.

• Docker CLI, a command line tool that uses the API to make all features easy to use.

From Docker 1.11, the CLI and the daemon are two different binaries you can decide to
install or just the engine if you don’t need the command line. This solution is also good for
production, where you can install only the daemon.

You can use the Docker daemon directly with the command ‘dockerd’. It supports different
communication protocols, by default it exposes a Unix Socket in unix:///var/run/docker.sock.
There is a long list of options that you can append after the command, for example:

• -D to allow debug mode.

• -H to configure the tcp host tcp://192.168.1.3:2376 for example.

• –tls to enable or disable TLS, by default it’s false but it’s highly recommended in
production

$ dockerd -D -H tcp://192.168.1.3:2376 --tls=false

Remember that the best way to manage the process and the service is with a process
manager. Each Linux distribution has their own application Upstart or systemd for Ubuntu,
Fedora and CentOS.

During the installation process for the most common Linux distributions like Ubuntu,
Fedora and CentOS, Docker sets up a common and standard init script that you can always
modify to fit your use case. In Ubuntu 15.04 you can find it in /etc/init.d/docker. It contains
start, restart, stop and all functions that you need to manage the process.

3.7 Image and Registry

To understand the Docker internals, we need to cover two other concepts: image and
registry. Every container starts from a base image, a read-only template that contains your
application or a base Ubuntu for example.You can create an image from a container or
from another image with a Dockerfile. Let me proceed with an example, pull Nginx from
the official repository with

\$ docker pull nginx

3.7 Image and Registry 19

We are downloading an official image from the hub and there are a lot of these kind of
images on the hub. ‘Official’ means that some organizations or some companies created
and maintains Nginx, Ubuntu, Debian, Redis, Apache, Php plus others and they allow us to
start our container from these images. Each layer composes the filesystem of our container
and Docker manages parallel downloads in order to make our pull efficient and fast.

\$ docker run -d --name demo_nginx -p 80:80 nginx
\$ docker ps

At this point, we have pulled an image that someone made, we created a new container
and now we can open our browser on localhost:80 and see our nginx up and running. We
can go directly into the container with:

$ docker exec -it demo_nginx /bin/bash

If we change the index.html and we want to save this change so we can use it in the future,
we would need to create a new layer on top of the previous ones. Every change made in
a running container will be lost if we don’t create this new saved point. We can run this
command outside of the previous container:

$ docker commit demo_nginx my/nginx

At this point we created a new layer and we have a new image called my/nginx to use as a
starting point for other images or to deploy in our servers. We need to read this change
from the top to the bottom, if we modify and commit index.html twice we will see just the
last version.

UnionFS5 is a filesystem service for Linux that implements a union mount for other file
systems in order to merge files and directories as branches and create a virtual filesystem.

5https://en.wikipedia.org/wiki/UnionFS

20 Chapter 3. Docker: The Fundamental

Docker uses this technology to split and mount images, an image is built on top of
something else and these layers are not copied but reused when we need them. The top
layer is a writable layer, it is added when a container starts and it’s the main difference
between an image and a container. An image doesn’t have this layer and for this reason if
you log inside a container and you make ‘su’ changes and you delete it without a commit
you just lose your changes.

This is just one way that we can create images. The best way to create an image is a
Dockerfile, because this file contains all the commands and information that we need to
know about your image. If your container is created from interactive mode without the
Dockerfile, you typed all commands directly into the container and you committed it after
a short time and you are not able to recreate or update it anymore. Usually this file is
located in your VCS close your application like into the micro application6 or you can
have a repository with a set of Dockerfiles to build your common images7.

Figure 3.3: Dockerfile located in the application repository.

Putting a Dockerfile close to your application helps developers to build a development
environment. Having one in your repository could be a smart way to enable new people
to start to work on your application without losing time to configure their laptop with all
services that your application requires. And also your application and your Dockerfile
change together and you can track these changes in Git. This last aspect is interesting
because you can rollback or apply QA not only to your code but also to your Dockerfile.

It practice a Dockerfile is a text file that contains commands and instructions that Docker
needs to build an image.

FROM ubuntu:15.04

RUN apt-get update RUN apt-get install -y php5 RUN echo "<?php echo ’Hello
folks!’;" > /var/index.php

WORKDIR /var

CMD ["php", "-S", "0.0.0.0:9090", "-t", "."]

6https://github.com/gianarb/micro
7https://github.com/gianarb/dockerfile

3.7 Image and Registry 21

This is an example of Dockerfile, it contains a php script that prints “Hello folks!”. What
we are doing with this file is specifying the base image.

FROM ubuntu:15.04

We are executing a command to install Apache2 and to create our index. CMD describes
the command which starts the process in the container when it runs, in this case we are
starting the PHP built-in web server.

$ docker build -t php-example .

‘build’ is a command to create an image from a Dockerfile, ‘-t’ is the image’s name and ‘.’
is the directory’s path that contains our Dockerfile. We can create a container from this
image and enjoy our application with the ‘run’ command

$ docker run -it -p 9090:9090 php-example

Now open your favourite browser and open localhost:9090

In the real world, the index.php for your application is not created with the container but
it’s added into it with the ADD instruction

ADD ./directory/to/add/ /path/into/the/container

In our specific example if the index.php is in the same folder as the Dockerfile, you can
replace

RUN echo "<?php echo ’Hello folks!’;" > /var/index.php

With

ADD ./index.php /var/index.php

An ./index.php is a php script that contains

<?php echo ’Hello folks!’;

Now build your image once more, when you have the new image remove index.php from
your filesystem and try to run a container

$ docker build -t your-username/php-example .
$ rm -rf index.php
$ docker run -it -p 9090:9090 your-username/php-example

You’ll notice that without the file you can see the correct page in the browser because you
built a new container that contains your application, it means that you can share and deploy
it like an artifact.

22 Chapter 3. Docker: The Fundamental

For this reason another important tool that Docker provides is the registry, it helps us to
manage the distribution of our images. There are public and private registries and the most
well known is hub.docker.com. It contains a lot of public images but once registered you
can also manage your private images. We will see in Chapter 3 how to install and manage
a private registry for your team or company. Go ahead and Register on the Hub if you
haven’t already because now it’s time to push ‘your-username/php-example’ into the Hub.

$ docker login

This command allows Docker daemon to communicate with your Hub account. The name
of the image defines a specific behavior, in my case my-username becomes ‘gianarb’
because it’s my username in Docker Hub.

$ docker push gianarb/php-example

Now our image is public in the hub and we can see all our images in the profile page.

$ docker rmi -f gianarb/php-example
$ docker pull gianarb/php-example

The first command deletes the image from our laptop and the second command pulls the
image from the Hub. This is a very simple example, but it explains what a registry is and
how it manages your images. Docker can also manage tags and has utilities to know the
difference between your image and your container in order to understand what you have
before creating a new image from a container. In the next chapters we will see all these
features in practice.

3.8 Docker Command Line Tool

The command line is a complete and powerful client to interact with the daemon and
knowing how it works will help you to create and manage containers.

docker –help shows the list of commands, we saw already some of them but you can use
this section as a summary of the most used commands.

3.8 Docker Command Line Tool 23

3.8.1 run

$ docker run hello-world

This command uses the hello-world image to run a new container. It has a lot of options
that you can use to share ports, mount volumes, run the container in a specific network and
also limit resources for a specific container. Let me show you a long composition in order

24 Chapter 3. Docker: The Fundamental

to understand in practice what means.

$ docker run -i -t -p 8000:8000 \
-v /home/gianarb/.ssh/id_rsa:/root/.ssh/id_rsa \
-v $PWD:/opt \
--network front-tier \
--memory 10M \
--name site \
gianarb/micro

• -i keeps the STDIN open

• -t allocates a tty

• -p shares a port from the container to the host in this case port 8000 to 8000, this
value is an array, you can share more ports. You just need to add more -p options.

• -v shares files and directories from the host to the container like volumes. This value
is an array and in this example we are sharing two volumes, the first one is my ssh
key that it’s stored in the host into the path /home/gianarb/.ssh/id_rsa in the container
/root/.ssh/id_rsa

• –network insert this container into the ‘front-tier’ network, we will see later what it
means

• –memory limits the RAM usable from the container to 10M

• –name is the name of the container

• gianarb/micro is the name of the image

3.8.2 ps

$ docker ps

This command shows you the number of containers that are running with a high level
summary of your containers. If you use the option -a you can also list the stopped
containers. Every container has an id or a name, you can use the complete name or a
partial id (only the first letter if it’s unique) to identity a specific container when you run a
command that requires a container id.

3.8 Docker Command Line Tool 25

3.8.3 exec

$ docker exec container_name ls -lsa

This executes a command (ls -lsa) in this case in a running container (container-name).

3.8.4 logs

$ docker logs container_name

This shows the logs written by a container, you can follow them with the -f option.

3.8.5 push and pull

$ docker pull gianarb/micro:1.0.0
$ docker push gianarb/micro

These two commands are used to manage an image and push or pull it from or to a remote
registry.

3.8.6 tags

$ docker tag 5wgs46h gianarb/micro:1.0.1

Every image can have a tag, it is a label assigned to an image. The default one is ‘latest’
but you can follow best practice and use SemVer8 for example like a normal codebase. In
this example we are tagging the image with ID 5wgs46h like example:1.0.1. You can also
use the tag command to prepare an image to be pushed to your own registry, the default
one is registry-1.docker.io but you can specify another and push your image to a private
one.

$ docker tag 5wgs46h registry.gianarb.it:gianarb/micro:1.0.1

3.8.7 inspect

$ docker inspect 4645shgre

Inspect returns information about an image or a running container. One of the very useful
options is –format, it converts the common cli output to raw json with information about
volumes, ports, ip and everything the daemon knows about the container. This is very
useful to create basic automation with tool like jq9 that allow you to cross a JSON directly
into the bash.

8http://semver.org/
9https://stedolan.github.io/jq

26 Chapter 3. Docker: The Fundamental

3.8.8 start, stop, restart, kill

$ docker start 464gts4

A Docker container exposes and manages processes therefore you can start, stop, kill and
restart a container like a normal process.

3.8.9 save, import

$ docker save gianarb/micro > micro.tar.gz
$ cat micro.tar.gz | docker import - my/micro:new
$ docker import http://example.exampleapp.com/micro.tar.gz

We already know that the registry is the best way to ship and distribute images but Docker
also supports the ‘save’ command to create a tarball of the image and the ‘import’ command
to create the Docker image from the tarball. This practice is good in development mode if
you need to share something with someone close to you. But to manage deployment and
production releases, the registry is the best way to ship and distribute images.

3.9 Volumes and File Systems

We know that a container has its own isolated filesystem and we also saw that it’s built
of different layers; but we haven’t yet gotten into volumes. A data volume allows your
container to bypass the Union Filesystem. Volumes are initialized when a container is
created and they provide features to persist and share your data. Every volume has a
mount point and if there is existing data it will be copied into the container’s volume to be
available and usable:

$ docker run -it -v /tmp ubuntu /bin/bash

-v is the option to create and attach new volumes.

$ docker run -it -v /tmp -v /opt ubuntu /bin/bash

You can also concatenate more than one in order to attach more volumes to the same
container.

Create a volume is useful if your application stores files that you need to mount in other
containers for example because you can mount the same volume on different containers. If
the current container dies or if you delete it all files store into the volume will be available
and you can attach them in the next container. Volumes are usually used to manage logs and
cache for example. You can also describe it in the Dockerfile with the keyword VOLUME:

VOLUME /tmp

3.9 Volumes and File Systems 27

You can also map a specific directory from your host into the container -v /tmp:/temporary
where the first path is the directory into the host and the second is the mount point into
the container. Because the changes persist in a volume are shared inside and outside of
the container, this feature is perfect in development as you can mount your project in a
container and simulate your production environment It’s also important to remember that
data inside a volume is also persisted when your container expires.

If you are not mapping a volume but you need to know where it is located on your host,
you can use the ‘docker inspect’ command and look at the Mounts field

{
...

"Mounts": [
{

"Name": "0f83dc",
"Source": "/var/lib/docker/volumes/0f83dc/_data",
"Destination": "/tmp",
"Driver": "local",
"Mode": "",
"RW": true,
"Propagation": ""

}
],

...
}

You can also use a cli command like

$ docker volume ls
$ docker volume create
$ docker volume rm

to create, delete and persist other actions to a volume.

This feature is a core feature which makes a container usable in development and pro-
duction. For this reason, Docker also provides a good abstraction layer to create custom
plugins to extend the system in order to mount different filesystems like NFS or a custom
one. There are many plugins that allow you to mount distributed storage, for example,
flocker10. Infinit11 is another great project that provides a Docker integration to manage
decentralized volumes on different platform like S3, Azure. I met the folks behind this
project during Docker Summit 2016 in Berlin, and it is a great service to manage persistent
and scalable storage on different Cloud providers. When you work in a cluster of Docker
Engines, your volume is created in the same host where your container starts. If your
system spins up containers in different servers this means that the other machines do not
have this volume, Infinit helps you to avoid this problem and takes care of the migration of
volumes in a cluster.

10https://github.com/ClusterHQ/flocker
11https://infinit.io/

28 Chapter 3. Docker: The Fundamental

Another way to use ‘volume’ is to make a backup. You can attach a volume created in
another container with –volumes-from <name-volume> like in this example:

$ docker run --rm --volumes-from img_avatar -v \
$PWD:/backup ubuntu tar cvf /backup/backup.tar

/var/www/front/public/avatar

As you have learned, it is possible to the same volume in more than one container at the
same time, but you need to remember that two applications that can write to the same files
can corrupt data, useful but you need to understand when and how to use it.

3.10 Network and Links

If volumes help us manage our data, network and links are a great feature to connect our
containers and allow communication between our applications. There are really important
features because usually it’s one of the first requirements for every application to be free to
communicate with other services like: MySQL, Redis, Vault or with other containers in
our cluster.

The simplest way to connect two containers is with a link:

$ docker run --name mysql-service -e MYSQL_ROOT_PASSWORD=root -d mysql
$ docker run --name my-wordpress \

-e WORDPRESS_DB_PASSWORD=root \
-e WORDPRESS_DB_HOST=mysql.my-wordpress \
--link mysql-service:mysql.my-wordpress \
-d wordpress

We create one MySQL container with a root password ‘root’ and we connect it with
a wordpress container. The hostname that we can then use to reach MySQL from the
wordpress container is ‘mysql.my-wordpress’.

–link <container-name>:alias this is the link’s format, you are creating bidirectional com-
munication between two containers and the alias describe the hostname that you can use.
You can create more than one link, you just need to add more –link options when you
execute the run command.

Links are a legacy way to easily connect containers, it’s very easy to understand but
in Docker 1.9 we have a new stable concept of network ready to be used. But before
proceeding, how does docker manage communication between containers?

3.10 Network and Links 29

By default docker create a new network interface called docker0 and a bridge network that
you can inspect with the command

$ docker network inspect bridge

It creates a default iptables NAT rule to allow outside communication between all containers
connected to docker0 and the outside world.

$ sudo iptables -L -n

The best way to manage connections and traffic between our containers is with networks.
We already know that docker creates a bridge by default, which means that every container
that runs in this network is free to reach each others.

We can convert our last example with wordpress

$ docker network create wp-test
$ docker run --name mysql-service -e MYSQL_ROOT_PASSWORD=root --network

wp-test -d mysql
$ docker run --name my-wordpress \

-e WORDPRESS_DB_PASSWORD=root \
--network wp-test \
-d wordpress

30 Chapter 3. Docker: The Fundamental

What changed is that we no longer have an alias but instead we can use the name of the
server. This is because docker has an embedded DNS server that provides this feature.
Remember that this particular feature doesn’t work with the default network bridge, instead
you’ll need to create your network, in my case ‘wp-test’.

3.11 In the end

What we saw is the Docker Engine but it is not alone, there is a big ecosystem around
docker containers. Now you know what Docker is and the basics about how to interact
with the daemon, we can now learn about what is available to manage our containers and
our infrastructure.

4. Biography

Figure 4.1: Thanks Ivan Frantar for this photo.

I am Gianluca Arbezzano (@gianarb) and
I work as Software Engineer in different
languages: PHP, Golang, JS and so on.

I am passionate about automation and all
the DevOps philosophy during my work
experience I used different cloud providers
like Amazon Web Service, OpenStack, Dig-
italocean.

I have a good experience about different
web layers I worked on AngularJs to build
mobile and web application but also devel-
oped backend and scalable infrastructure
but I am focused right know on the last
one.

I started my experience as developer with open source product and framework like Linux,
PHP, Zend Framework, Vagrant and for this reason I am actively involved on different
open source community Zend Framework, Doctrine, PHP, Golang and Docker.

I am a Docker Captain, it’s a group of Docker experts and leaders in their communities who
demonstrate a commitment to sharing their Docker knowledge with others (by. Docker
Inc).1 This book is a way to share my experience with the big and great community around
Docker, containers and distributed systems.

You can find me on Twitter2 and GitHub3, they are my mainly social network, I am also a
blogger4 and an active and passionate speakers5.

Out of the web I am a volunteer involved on different ONG and ONLUS, I like the idea to
leave the world better than you found it. I love ski, play football with friend, have a chat in
some nice pub with a pint, eat and cook and son on.

1https://www.docker.com/community/docker-captains
2https://twitter.com/gianarb
3https://github.com/gianarb
4http://gianarb.it/blog
5http://gianarb.it/conferences

	1 About the book
	1.1 Audience
	1.2 Mission
	1.3 This Chapter

	2 Containers: why we are here
	2.1 Isolation and Virtualization
	2.2 The Reason
	2.3 Linux Container in practice

	3 Docker: The Fundamental
	3.1 Introduction
	3.2 Install Docker on Ubuntu 16.04
	3.3 Install Docker on Mac
	3.4 Install Docker on Windows
	3.5 Run your first HTTP application
	3.6 Docker engine architecture
	3.7 Image and Registry
	3.8 Docker Command Line Tool
	3.8.1 run
	3.8.2 ps
	3.8.3 exec
	3.8.4 logs
	3.8.5 push and pull
	3.8.6 tags
	3.8.7 inspect
	3.8.8 start, stop, restart, kill
	3.8.9 save, import

	3.9 Volumes and File Systems
	3.10 Network and Links
	3.11 In the end

	4 Biography

