

Contents

Contents 2

1 Docker Security 3
1.1 Introduction 3
1.2 Mutual TLS and Security by Default . . . 5
1.3 Content Trust 8
1.4 Overlay Network 21
1.5 Docker Bench Security 21
1.6 Process Restriction and Capabilities 24
1.7 Open Source 27
1.8 Linux Kernel Security 27
1.9 Cilium . 32
1.10 About your images 40
1.11 Docker Security Scanner 45
1.12 Secret Manager 46
1.13 Immutability 49

2 Biography 51

2

Chapter 1

Docker Security

Reviewers: Gareth Pelly, Riyaz Faizullabhoy

1.1 Introduction

When you have to manage a production environment se-
curity is one of the first points that you have to address.
In this chapter I will share best practices and tips around
this topic.

Shipping your application out of your laptop creates
more problems and it doesn’t matter if it’s inside or out
of a container:

• You need to be sure that what are you sending
out of your laptop is compliant and doesn’t contain
compromised content.

3

CHAPTER 1. DOCKER SECURITY 4

• You need to check if what you are downloading, for
example the binary of your application is what you
need and not something different.

But from a security point of view a container is a new
layer of isolation between different applications, not only
between different instances of the same application but
also between the app and the operation system. Docker
offers more flexibility: you can update your application
quickly, scale containers on different hosts and apply se-
curity scan to discover vulnerabilities. Containers add a
new layer of abstraction which adds some complexity but
also a set of utilities to make your production environ-
ment solid and safe.

Usually, in order to have a safe environment, you have
to delete what is not really important for you, everything
that is unused could be a cause of problems.

There are also choices that you can make to secure
your environment like using a firewall, encryption and
so on. We will cover all these elements throughout this
chapter.

CHAPTER 1. DOCKER SECURITY 5

1.2 Mutual TLS and Security by

Default

In SwarmKit, Docker implemented a “Security by de-
fault” layer that is enabled by default in every cluster.
It is embedded in Swarm, and unlike security flags im-
plemented in other tools, it does not have a flag to dis-
able them in a development environment. In practice,
this security layer implements the Mutual TLS (mTLS)
concept to manage server-to-server authentication, the
Swarm managers are also have a Certification Authority

CHAPTER 1. DOCKER SECURITY 6

(CA) built-in. It signs and knows the identity of every
worker and it’s replicated across multiple masters to be
highly available. Every worker has a proper identity in
order to allow the master to understand if the worker is
part of the cluster and if it’s operating as expected and
also to avoid possible fake and malicious workers.

All these certificates and signatures are used during
the gossip protocol because all traffic into the cluster is
encrypted. There are a lot of stories from different com-
panies about attacks and exploits and usually they need 6
months to detect them. For this very reason is extremely
important to rotate these certificates in order to reduce
the range or exposure. By default, Swarm rotates keys
every 3 months and it works with a whitelist of validate
certificates which is unusual as other applications gen-
erally work with a blacklist of invalid certificates which
can become really long and hard to manage. Thankfully,
this process is automatic and totally transparent for your
cluster.

It also supports the use of an external CA, if you have
already one that you trust then you can continue to use
it.

Follow the link in the note to see a great presentation
that was given during DockerCon 2016, it is great to have
an idea about how this flow works in practice.

When you start a swarm cluster you also receive two
tokens, one to identify and add new managers and the
other to add the workers. You will need to provide these

CHAPTER 1. DOCKER SECURITY 7

tokens when you join a node. You can rotate these tokens
too, this means that the old one will become invalid and
you need to use the new one. You can decide to rotate
just one of them and the reasons for this are usually:

• someone copy them on slack, email or other 3rd
party service

• you put your key in git

These tokens have a specific format:

SWMTKN-1-3mqolc2i75ygkj51df3339mkhdtel6ynjexqfvb6vhc2viywxc-3yonjuwq8wclj1r7g3ke3ha0p

SWMTKN is standard and you can use it to scan your
environments and understand if someone committed that
token in git for example or it was sent in an email. The
second (3mqolc2i75ygkj51df3339mkhdtel6ynjexqfvb6vhc2viywxc)
part is the encrypted hash of the CA root certificate, it’s
the section used during the bootstrap to identity your
cluster. The last part (3yonjuwq8wclj1r7g3ke3ha0p) is a
generated secret.

There is no automatic policy to rotate your key but
you can always use the proper command in order to in-
valid the old ones and generate new tokens:

docker swarm join-token --rotate worker

docker swarm join-token --rotate master

These tokens are the keys to identity the role of the
new node in the cluster but also if the node can join it.

CHAPTER 1. DOCKER SECURITY 8

If the token is wrong or old then the node can not be
added but it also means that someone is trying to add
an unsafe node.

By design the communication between node are mono
directional. The masters can take the decision and com-
municate what the workers need to do, this decision guar-
antees that a compromised worker can not take decision
itself or manipulate the cluster.

1.3 Content Trust

Securing software updates is a challenging problem - whether
we’re updating our own application or downloading a new
package from the Internet. In both cases, dependencies
represent a risk for our current environment. New pack-
ages come from a source that needs to be trusted in some
way. We need to understand what we are downloading,
does it contain the right content? Is the version that we
required the same one that are we getting?

Dependencies represent a huge part of our application
but also of our whole stack, for example how many system
packages did you download or update on your server?
This is an important question for many different sources:
package managers and registries like Apt, Yum but also
rubygem, composer and many others from application
point of view. With Docker you have the same problem,
how can you trust the source of the image and the content

CHAPTER 1. DOCKER SECURITY 9

from Docker Hub? Docker comes with a solution called
Docker Content Trust but I’ve renamed it “The world
behind a pull”.

You might think this problem is already solved by
signing images with GPG and sending them over TLS,
but this approach falls flat because it does not provide
context around the signature.

For example: The identity of the registry: where does
my image come from? Or even better, is it coming from
the place that I hope?

Between the packaging and the reception, what hap-
pened? You need to verify the integrity of your con-
tent Are the signatures for this image too out of date?
Are they are still valid? What was the intent of the
publisher when pushing this image? And should they
have been able to push this image in the first place?
Docker works on all these mechanisms with an imple-
mentation of the “The Update Framework” (TUF). It’s
an open source framework and specification designed to
make the update lifecycle safe.The studies behind this
framework are backed by peer-reviewer academic papers
published in top-tier conferences because they identified
common and security vulnerabilities across package man-
agers and designed TUF to be robust against the attack
vectors they discovered. The framework is inspired by
Thandy the Tor’s secure updating system, the authors
of the framework abstracted Thandy’s concepts to make
them reusable in different environment.

CHAPTER 1. DOCKER SECURITY 10

Notary is an opinionated implementation of the TUF
spec by Docker Inc. It’s also integrated in Docker itself
and in the Hub. TUF not only signs the content of the
package but it also signs contextual information about
your tarball, files, or images since it can be used to secure
any kind of content. Another powerful decision around
TUF is the F. It is a framework. It means that it’s not a
platform that you need to take as you find but it exposes
a set of primitives, utilities and concepts that you can
connect to support your flow.

It is based on a couple of principles:

• Responsibility separation to decrease the scope of
a specific role and by consequently increase the se-
curity of your system. Someone can sign all your
releases and another one can sign and declare the
latest version of the software for example.

• Survivable key compromise and scoped keys. The
idea is to make key revocation easy and also define
roles with set privileges for each key. In some cases,
you can also manage different sources for your keys
based on security requirements. For example, you
can restrict delegation keys to only have privilege
to sign for specific package paths.

• Multi-signature thresholding to only allow signa-
tures to be valid for a package if a quorum of des-
ignated collaborators have signed explicit and im-

CHAPTER 1. DOCKER SECURITY 11

plicit revocation. Explicit should be easy within
the framework, if your keys are compromised. Im-
plicit is when you key expires with an expiration
date.

A TUF repository contains all metadata to trust your
resources and they are totally separated from the package
itself which could be in your HDD, in a CDN, S3 or
anywhere. The various metadata files are signed from
different keys with different rules. All metadata has an
expiration date and it is different depending on the type.

There are five metadata roles:

• Root

• Targets

• Snapshot

• Timestamp

• Delegation

All these roles have one or more keys and requires a
threshold of signatures to trust a metadata. Threshold
is not required, by default in Docker/Notary is 1 but it’s
good to know if you need to build a complex solution
that requires more than one signatory.

Root

CHAPTER 1. DOCKER SECURITY 12

Root is the root of trust, it defines all keys to trust
also itself. The client uses the root key to store informa-
tion about the registries that it already trusted. The root
key needs to be stored in a safe place offline. It means
that it’s not easy to mange and for this reason, it has
the longest expiration date. The root signs all keys but
it has no information about the final resources itself.

Targets
Information about files and artifacts is signed by the

Targets. It contains the mapping between the human
name of the resource and the hash used to address inter-
nal communication between client and repository. The
Targets key doesn’t sign the file itself but it signs related
metadata such as content hash, size and so on. The Tar-
gets key defines which individual packages are trusted.

Delegation
The Targets key also specifies collaborators to define

who can sign what and in the meantime these collab-
orators are delegators and they sign the Targets like a
Delegation.

In practice for example you can declare that a new
release, to be trusted content needs to be signed from two
collaborators. These collaborators can be for example the
maintainer of the project.

Snapshot
The Snapshot gives you a valid picture of the TUF

repository, it lists the hash and the size of all metadata.
It allows the client to verify if the metadata presented in

CHAPTER 1. DOCKER SECURITY 13

the TUF repository at a particular time is not presented
to clients by an attacker, probably with different content.

The Snapshot role is very important because one of
the possible attacks is based on old releases, or mixing
and matching previous releases

Timestamp
Timestamp gives information about the latest version

of the resource. It’s the perfect way to understand if you
are downloading a fresh version of the release. It contains
the hash of the Snapshot and has a very short expiration
date in order to oblige clients to ask for fresh metadata
frequently.

Timestamp and Snapshot together contrast the most
common replay attacks such as roll-back freeze. Roll-
back attack is when an attacker forces the user system
to serve an old version of the package, probably with a
public security vulnerability that it can use later to broke
into the system (ex: openssl with Heartbleed).

Freeze attack is when the attacker manipulates the
repository in order to always serve a specific previous
version after the team has released a new valid one.

Now we know why GPG is not enough, all the roles
and keys of TUF reassure clients about what they are
downloading is authentic and fresh. One of the reasons
that you have to release a new version of your library
is because it has an horrible security vulnerability that
other people already discovered. In the example of using
GPG signatures, since that old version of your library

CHAPTER 1. DOCKER SECURITY 14

was valid before the vulnerability was discovered, it was
probably signed as a valid piece of software – however,
since GPG does not provide any expiration or revocation,
that signature is still valid now even though the software
is vulnerable. With only the Timestamp role you can
be sure that you can trust what you are downloading
only if you get the latest version but if for some reason,
the most common is because it’s not 100% compatible
and you have not time to update, you are download an
old version only the Snapshot role can tell you that that
version is the right version.

This graph represent how they are connected and the
information that they contain. Docker implements all
this flow in Notary, a standalone library that you can use
to create your update lifecycle. It’s also fully integrated
into the Docker Hub and into the CLI. This feature in
Docker CLI can be enabled by setting this environment
variable

CHAPTER 1. DOCKER SECURITY 15

export DOCKER_CONTENT_TRUST=1

Docker Content Trust leverages Notary by signing
mappings from image tags (which are human readable)
to digests (SHA256 hashes). It does so by translating
the following commands that operate over tags into com-
mands that use hashes, after it verifies the information
from a specified Notary server. If the TUF validation
fails from the Notary server, the operation is rejected
outright, before any image data is pulled or run.

Docker Content Trust commands:

• push

• build

• create

• pull

• run

You can always use the option –disable-content-trust
to disable this check runtime.

A repository can contain both signed and unsigned
tags but if you force your client to work with DOCKER CONTENT TRUST=1,
the client will see only signed images, the others will ef-
fectively behave as if they do not exist since the Notary
TUF metadata will not validate.

CHAPTER 1. DOCKER SECURITY 16

Notary provides a CLI and a server component that
you can use to sign and verify your data as a simple,
tarball, application artifact. It’s a good example to help
understand that it works not just for containers but for
other kinds of data. We can add this to our pipeline to
verify that every deployment in each of our environments
contain what we expect, it also allows verification if make
the data publicly available that the content is still correct.

The first step is to clone the repository and download
Notary CLI. Docker provides some binaries that you can
download directly from the GitHub repository (in this
example I am working on Linux):

go get gihub.com/docker/notary

cd \$GOPATH/src/github.com/docker/notary

make binaries

./bin/notary version

notary

Version: 0.4.2

Git commit: c8aa8c

The last command is only to check that everything is
working as expected.

CHAPTER 1. DOCKER SECURITY 17

Notary is made of different parts, notary-server, notary-
signer, database and a command line tool to interact with
the server, we clone the repository because it contains a
few utilities to start a server with docker-compose:

docker-compose build

docker-compose up -d

mkdir -p ~/.notary && cp cmd/notary/config.json

cmd/notary/root-ca.crt ~/.notary

And we also need to add a new entry in our /etc/hosts

127.0.0.1 notary-server

CHAPTER 1. DOCKER SECURITY 18

Or the ip of the docker-machine if you are using docker-
machine.

Now that we have everything up and running we can
init a notary TUF repository

bin/notary init scaledocker-demo

It will create for us few keys one for each role and
we need to remember all the passphrases. We can store
them in some a safety password manager as KeepassX.

At this point we can publish our scaledocker-demo
repository.

./bin/notary publish scaledocker-demo

./bin/notary list scaledocker-demo

No targets present in this repository.

Because our repository is empty,we can create a very
simple file:

echo "echo hello! Enjoy your book dockers!" >

./hello.sh

./hello.sh

We can sign it with notary

./bin/notary add scaledocker-book hello-script

./hello.sh

./bin/notary publish scaledocker-book

The last command asks us to type targets and snap-
shots passphrase because we need to sign a new hash as

CHAPTER 1. DOCKER SECURITY 19

a target for hello.sh, and a new version of the targets
file that now includes hello.sh into our snapshot. The
add command supports -p option to publish the content
directly without the explicit push command.

./bin/notary verify -i ./hello.sh

scaledocker-demo hello-script

Imagine that ./hello.sh is a file downloaded from a
repository or from the web, notary checks it and in this
case comes back with a success because the hash of the file
matches the hash signed into notary - which has a valid
signature from our trusted targets key and no metadata
is out of date

./bin/notary verify -i /evil-script.sh

scaledocker-demo hello-script

* fatal: data not present in the trusted collection,
sha256 checksum for hello-script did not match: expected
06c8971ac4183b56f3e75f84702541dacd51dc6fd6c3b298e8578a27c7401358

If you try to check another file such as /etc/hosts
notary blocks you because the file is different. You can
try to update the hello.sh file in your site and with curl,
download and verify it. I can not setup this test for you
because it’s not nice ask you to download a malicious file
from a random server. As you can see its very easy to
use!

./bin/notary key list

CHAPTER 1. DOCKER SECURITY 20

You can check the current target key id, remember it
and now we can rotate:

./notary key rotate scaledocker-demo targets

Where targets is the type of key that you need to
update and scaledocker-demo is your repository. Now
you can list another time your keys and here we are, the
key id for the targets role is different. We have a new key.
Try to verify hello.sh again to check that all is working
like expected. Rotation key is easy and transparent for
your files, all the packages signed with the old keys are
still valid.

These are the default expiration dates in Notary. Your
content shouldn’t expire for the next three years. But you
need to have a mechanism to re-sign your content after
that time because if the Targets key expires the content
is not valid for the client, it means that the download will
fail. Same for the Root key, after its expiration all the
TUF Repository will be invalid for the client. In this sce-
nario, it’s important to note that Notary and TUF make
the subtle differentiation between old-but-good and out-
of-date software because old versions that are still good
must be explicitly re-signed.

Root - 10 years Targets and Delegations - 3 years
Snapshot - 3 years Timestamp - 14 days

I know, you cannot wait to use it in a real environ-
ment!

CHAPTER 1. DOCKER SECURITY 21

1.4 Overlay Network

The overlay network by default is not encrypted, by de-
fault swarm encrypts all communication between nodes
but the communication between containers is not. When
you create a network you can enable encryption:

docker network --opt encrypted --driver overlay

tick-net

This option is not enabled by default primarily be-
cause swarm doesn’t know how your application works
and in some cases it could create a problem. Before al-
lowing it by default we need to know the real degradation
created by the introduction this new layer.

But remember that having this security layer which
is easy to enable is great.

1.5 Docker Bench Security

Frequently, best practices help you to have a safe envi-
ronment, docker-bench-security is an open source project
that runs in a container and scans your environment to
report a set of common mistakes like:

• Your docker is not up to date

• Your kernel is too old

CHAPTER 1. DOCKER SECURITY 22

• Some Docker daemon configurations are not good
enough to run a production environment

• Your container runs 2 processes

It’s a great idea to run it at some stage in each host
to have an idea about the status of your environment.
To do that you can just use this command when running
a container.

docker run -it --net host --pid host --cap-add

audit_control \

-v /var/lib:/var/lib \

-v /var/run/docker.sock:/var/run/docker.sock \

-v /usr/lib/systemd:/usr/lib/systemd \

-v /etc:/etc --label docker_bench_security \

docker/docker-bench-security

You can try it in your local environment. Run the
command and check what you can do to make your local
environment safe.

This tool is open source on GitHub, it’s a great ex-
ample of collaboration and how a community can share
experiences and help other members to improve an envi-
ronment.

This is a partial output:

Initializing Thu Nov 24 21:35:24 GMT 2016

CHAPTER 1. DOCKER SECURITY 23

[INFO] 1 - Host Configuration

[WARN] 1.1 - Create a separate partition for

containers

[PASS] 1.2 - Use an updated Linux Kernel

[PASS] 1.4 - Remove all non-essential services

from the host - Network

[PASS] 1.5 - Keep Docker up to date

[INFO] * Using 1.13.01 which is current as

of 2016-10-26

[INFO] * Check with your operating system

vendor for support and security maintenance

for docker

[INFO] 1.6 - Only allow trusted users to control

Docker daemon

[INFO] * docker:x:999:gianarb

[WARN] 1.7 - Failed to inspect: auditctl command

not found.

[WARN] 1.8 - Failed to inspect: auditctl command

not found.

[WARN] 1.9 - Failed to inspect: auditctl command

not found.

[INFO] 1.10 - Audit Docker files and directories

- docker.service

[INFO] * File not found

[INFO] 1.11 - Audit Docker files and directories

- docker.socket

[INFO] * File not found

CHAPTER 1. DOCKER SECURITY 24

1.6 Process Restriction and

Capabilities

We already know that behind the word containers are
chroot, namespace and other bunch of kernel features.
They offer a great granularity for system capabilities, it
means that we can restrict our application for a subset
of resources like memory and cpu but also for network-
ing and filesystem. If our application is under attack we
can protect our host and other containers by optimizing
resources.

If we know our application requires 500M of RAM,
we can set a limit on our container:

docker run -m=500M gianarb/micro

You can also limit other resources via some other op-
tions: –kernel-memory, –memory-swap, –cpu-period, –
cpu-quota, –cpu-shares, –device-read-iops, –device-read-
bps, –device-write-iops, –device-write-bps.

You can monitor your container with the command:

docker stats <container-id>

And discover how you configured it with the inspect
command:

docker inspect -f ’{{ .HostConfig }}’

If we are under attack this doesn’t resolve all problems
because an out of memory container will be killed but we

CHAPTER 1. DOCKER SECURITY 25

can mitigate bad behavior and save our cluster. Usually
a root user has access to all Linux capabilities like creat-
ing files, manipulating processes, mount, reboot while a
non-root user has access to less privileges but can ask to
become root. If your application can not access a partic-
ular capability that it needs then it doesn’t work, for this
reason, by default docker balances the access between se-
curity and simplicity. Right now a default container has
access to:

• chown

• dac override

• fowner

• kill

• setgid

• setuid

• setpcap

• net bind service

• net raw

• sys chroot

• mknod

CHAPTER 1. DOCKER SECURITY 26

• setfcap

• audit write

It’s pretty much impossible to find a standard config-
uration that everyone can use and for this reason docker
allows you to add or drop capabilities into the run com-
mand:

docker run --cap-drop setuid --cap-drop setgid

-ti debian /bin/sh

docker run --cap-add all --cap-drop setgid -ti

debian /bin/sh

Leave out any access and OS tools that your appli-
cation doesn’t need, it’s a useless risk. For this reason,
having a studied capability configuration is a good secu-
rity layer for your host.

NET RAW allows you to use a raw socket and packet
socket, in practice and at a high level it allows you to
receive a package from the web. However, if we drop this
package and you run an alpine container that drops that
capability, then try and ping google in the container:

docker run -it --cap-drop NET_RAW alpine

/bin/bash

/ # ping google.com

ping: permission denied (are you root?)

Because our container does not have that capability.

CHAPTER 1. DOCKER SECURITY 27

1.7 Open Source

It may seem crazy or obvious but docker is an open but
Docker is an open source project, one of the biggest open
source projects This means that there is a community
around the project that finds and fixes bugs and security
issues 24 hours a day. The code is fully open and anyone
can contribute and make it safe. There are other philoso-
phies about this topic like how can public code could be
secure? But you know, this subject covers far too much
to be discussed here.

1.8 Linux Kernel Security

It is not just chroot and namespace but also there are
other linux kernel security tools like SELinux, Apparmor,
Seccomp that work with Docker to enable you to config-
ure profiles and to allow your container to have visibility
only for what it really needs in order to isolate it from
the host and from other containers.

SELinux
SELinux is a security tool created in 2003, it is based

on the label concept. Everything inside a system has
labels: files, network, hosts, mount, directory. You can
write a role based on these labels to allow particular ac-
tion to a specific resource. The owner of a file does not
have a particular permission on what he created, every-

CHAPTER 1. DOCKER SECURITY 28

thing is managed by labels and by default everything is
deny. The iteration between this resource and what a
process can do is is called a policy.

Let me explain with an example: in a football team
there are two kinds of players, a goalkeeper and the nor-
mal players.

A player can have one of two labels, normal and goal-
keeper. Ball and hand are also labels and we need to
describe a policy because the goalkeeper has permission
to touch the ball with their hands:

allow + goalkeeper + ball:hand + touch

What you can do is to describe the policy and attach
them in the container, however you need to allow your
host to work with SELinux. It’s complex and hard to
maintain but it’s also very powerful and flexible, you have
a high granularity and many possible configurations.

AppArmor
AppArmor is a Mandatory Access Control for Linux.

It’s included in the Linux Kernel from version 2.6.35. It’s
quite young and it’s built as an SELinux alternative but
judged too complex.

You can write a policy to describe what your applica-
tion can or cannot do and in the case of Docker Container
you can attach that policy in a running container.

To run this example, we need to have AppArmor in-
stalled, we can not do that in our Mac or with boot2docker,

CHAPTER 1. DOCKER SECURITY 29

for this reason I use a droplet on digitalocean and docker-
machine.

First of all, we need to create our server:

docker-machine create -d digitalocean

--digitalocean-access-token $DO app-do

docker-machine ssh app-do

Where $DO is my access key and app-do is the name
of the problem. Now that we are inside we can have a
look of /etc/apparmor.d/docker with the command:

cat /etc/apparmor.d/docker

This file contains the default configuration loaded by
docker in every container, but it’s time to add our custom
policy:

Copy this:

#include <tunables/global>

profile sample-one

flags=(attach_disconnected,mediate_deleted)

{

#include <abstractions/base>

network,

capability,

file,

umount,

deny /etc/** w,

CHAPTER 1. DOCKER SECURITY 30

}

In /etc/apparmor.d/sample-one and reload the ap-
parmor service

service apparmor restart
And start a new container with the profile sample-one

previously declared:
docker run –security-opt=”apparmor:sample-one” –

rm -it alpine /bin/sh
Before trying to do some tests in our container, let

me explain to you what that policy means. We created
a new profile called sample-one that allows our container
to work with network, capability, file andunmount but
we also made /etc/** read-only with the role:

deny /etc/** w

Now what we can do is to write two files in our con-
tainer

touch /tmp/hello.txt

touch /etc/bad.txt

The first command runs successfully, the second one
returns:

touch: /etc/ciao: Permission denied

We can create a more complex policy to make our
container and our host secure. I like AppArmor more
than other similar tools because it’s not too complex and

CHAPTER 1. DOCKER SECURITY 31

offers good flexibility for normal use cases. It’s always
easy have a long and hard file to read, I’m happy to
quote Jess Frazelle:

AppArmor profile pull requests is the bane of
my existence

Jess Frazelle

She created a tool called bane to create and main-
tain AppArmor policy from a YAML specification file.
seccomp You can think of seccomp like a syscall firewall.
Syscall is the mechanism that a process uses to communi-
cate with the kernel of the operating system like: access
to the hard drive, start a process, communicate with the
scheduler and, in practice, everything the kernel can do.
Docker has a default profile for every container that dis-
ables about 40 system calls but you can override them
with a specific profile for your container. The real prob-
lem with a seccomp profile is that it is very hard to write
and maintain, for this reason it’s very hard to work with
it.

Every one of these tools has the same entrypoint in
Docker, you can specify a custom role for your container
during the run command with –security-opt options. It
is the common entry point, here is an example:

docker run --rm -it \

CHAPTER 1. DOCKER SECURITY 32

--security-opt

seccomp=/path/seccomp/profile.json \

gianarb/micro:1.0.0

1.9 Cilium

Each architecture has iptables that manage connections
with the outside but also that block or allow communi-
cation between servers.

In AWS, we have security group that manages this
for us and it’s always good practice to have a strong
configuration that disables all kinds of traffic and only
allows what our application requires. We can do the same
with our containers.

iptables is not designed to support the new dynamic
environment that contains produce and also it’s not very
scalable. iptables with thousands of rules will start to be
slow.

Cilium is an open source project supported by Cisco
to manage networking and security policies between con-
tainers. It requires Linux Kernel ¿= 4.8 because it uses
eBPF to provide a fast and in-kernel implementation.
This means that it works also with Kubernetes and other
container platforms.

CHAPTER 1. DOCKER SECURITY 33

This image is taken from the original documentation
and explains the architecture on top of Cilium. BPF is a
bytecode interpreter introduced to filter network packets
and Cilium provides a CLI to define network policies.

It also exposes a monitor and a set of plugins, one of
them allows you to manage integration with Docker.

Cilium daemon receives policies described by you that
contain information about which containers can speak
with another, it compiles a BPF and injects it into the
system. Docker plugins use labels to translate these poli-
cies, this means that you need to attach a specific –label
when you run your containers. We can continue with an
example.

CHAPTER 1. DOCKER SECURITY 34

git clone git@github.com:cilium/cilium.git

~/cilium-test

cd ~/cilium-test

NUM_NODES=1 ./contrib/vagrant/start.sh

Cilium has a Vagrantfile that helps you to start a
demo, we are using that solution. It means that you
need to have virtualbox and vagrant up and running in
your machine. In this case we started a 2 node swarm
cluster.

Go into the master and install docker-compose

vagrant ssh

We need to create a cilium network to allow docker
to use the plugin:

docker network create --ipv6 --subnet ::1/112

--ipam-driver cilium --driver cilium cilium

cd ~/

If you run docker ps you can see that there are 2 con-
tainers un and running. This box is built to run few
example. Cilium uses a key value storage, in our case
Consul to map the network and the container available.
You can also get some information about the cilium dae-
mon and also check that it’s up and running.

cilium daemon status

KVStore: OK - 172.17.0.3:8300

Docker: OK

CHAPTER 1. DOCKER SECURITY 35

Kubernetes: Disabled

Cilium: OK

V4 addresses reserved:

10.1.0.1

10.1.28.238

10.1.116.202

10.1.138.214

V6 addresses reserved:

f00d::c0a8:210b:0:f236

f00d::c0a8:210b:0:f7e8

At this point all is good and we can start our test.
We are creating a client and a server. In our case what
we are going to set up is a one way communication from
the client to the server and not vice versa.

docker run -d --name server --net cilium --label

io.cilium.service.server alpine sleep 30000

docker run -d --name client --net cilium --label

io.cilium.service.client alpine sleep 30000

Now let’s use cilium to understand if it registered our
two containers:

cilium endpoint list

ENDPOINT ID LABEL ID LABELS

(source:key[=value]) IPv6

IPv4 STATUS

29898 258

cilium:io.cilium.service.client

f00d::c0a8:210b:0:74ca 10.11.247.232 OK

CHAPTER 1. DOCKER SECURITY 36

35542 257

cilium:io.cilium.service.server

f00d::c0a8:210b:0:8ad6 10.11.28.238 OK

cilium endpoint list shows the two endpoints based
on the labels of our containers.

docker exec -it client ping server

The normal behavior of the ping is that it will work.
The two containers are in the same network and usually
they are able to ping each other. But as you can see it’s
not what it’s happening right now. At this point what
you are going to do is start to think about a Docker’s bug
and start to debug with tcpdump and so on. Cilium has a
command called cilium monitor. It’s a very good utility
that filter package that come from and to a container
and also figure out what is happening in our particular
scenario.

sudo cilium monitor

CPU 01: MARK 0x1eb5e162 FROM 63464 DEBUG: CT

verdict: New

CPU 01: MARK 0x1eb5e162 FROM 63464 DEBUG: Policy

denied from 258 to 257

CPU 01: MARK 0x1eb5e162 FROM 63464 Packet dropped

133 (Policy denied) 98 bytes ifindex=15

258->257 to lxc 63464

00000000 92 d4 f6 b5 85 3f d2 e1 17 af 39 af 08

00 45 00 |.....?....9...E.|

CHAPTER 1. DOCKER SECURITY 37

00000010 00 54 5a 4b 40 00 40 01 cc bb 0a 01 74

ca 0a 01 |.TZK@.@.....t...|

00000020 8a d6 08 00 40 16 05 00 00 05 2b d4 87

10 00 00 |....@.....+.....|

00000030 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 |................|

The monitor is telling you “Policy denied from 258
to 257”. These numbers are the endpoints id and the
monitor is telling us that the client is unauthorized to
connect with the server.

cilium policy allowed -s

cilium:io.cilium.service.client -d

cilium:io.cilium.service.server

Resolving policy for context &{Trace:1

Logging:0xc42177b590

From:[cilium:io.cilium.service.client]

To:[cilium:io.cilium.service.server]}

Root rules decision: undecided

No matching children in io.cilium

Root children decision: undecided

Final tree decision: deny

With this command we are just asking the cilium dae-
mon to tell us about the current relation between two
endpoints a source (-s) and a destination (-d). In our
case the final decision is deny. It means that our con-
tainers are not able to speak. The problem is that we
didn’t load a policy.

CHAPTER 1. DOCKER SECURITY 38

A policy is a hierarchical tree that explain connections
between endpoints, let’s add one to allow client to speak
with sever. You can copy that policy in ./cs.policy and
load it with the command cilium policy import ./cs.policy

{

"name": "io.cilium",

"children": {

"service": {

"name": "service",

"children": {

"client": {

"name": "client"

},

"server": {

"name": "server",

"rules": [{

"allow": [{

"action": "accept",

"label": {

"key": "host",

"source": "reserved"

}

},

{

"action": "accept",

"label": {

"key":

"../client",

"source":

CHAPTER 1. DOCKER SECURITY 39

"cilium"

}

}]

}]

}

}

}

}

}

Now that we loaded that policy we are able to ping
the server from the client but not vice versa.

Cilium is a very powerful tool and well design. CISCO
is doing a very good work to close the gap between the
traditional application firewall and the high scalable and
“containarized” ecosystem.

It’s also well optimised to reduce the amount of code
generated to implement your policies. This is important
when you are working on this level, into an interface you
can manage a big traffic and every unnecessary line of
code makes the difference.

At the moment the project has not a stable release
and also the kernel’s features required are not easy to
accomplish but it’s still a project that you need to know
and you need to follow. The network feature provided
by Docker has not a powerful granularity and define how
your network works make the difference between a safe
and unsafe environment.

CHAPTER 1. DOCKER SECURITY 40

1.10 About your images

Everything unnecessary in your system could be a very
stupid vulnerability. We already spoke about this idea
in the capability chapter and the same rule exists when
we build an image. Having tiny images with only what
our application needs to run is not just a goal in terms
of distribution but also in terms of cost of maintenance
and security.

If you have some small experience with docker already
you probably know the alpine image. It is build from
the Alpine distribution and it’s only 5MB size, if your
application can run inside it then this is a very good
optimization that you can do.

What about your binaries? Can your application run
standalone? If the answer is yes you can think about
a very very minimal image. scratch is usually used as
a base for other images like debian and ubuntu but you
can also use it to run your golang binary and let me show
you something with our micro application.

In the release page, there are a list of binaries already
compiled and ready to be used. In this case we can down-
load the linux 386 binary.

CHAPTER 1. DOCKER SECURITY 41

curl -SsL https://goo.gl/o6tle5 > micro

And we know we can include this binary in the scratch
image with this Dockerfile

FROM scratch

ADD ./micro /micro

EXPOSE 8000

CMD ["/micro"]

CHAPTER 1. DOCKER SECURITY 42

docker build -t micro-scratch .

docker run -p 8000:8000 micro-scratch

The expectation is an http application on port 8000
but the main difference is the size of the image, the old
one from alpine is 12M the new one is 5M.

The scratch image is impossibile to use with all ap-
plications but if you have a binary you can remove a lot
of unused overhead.

Another way to understand the status of your image is
to scan it to detect security vulnerabilities or exposures.
Docker Hub and Docker Cloud can do it for private im-
ages.

This is a great feature to have in your pipeline to scan
an image after a build.

CoreOS provides an open source project called clair
to do the same in your environment.

It is an application in Golang that exposes a set of
HTTP API to pull, push and analyse images. It down-
loads vulnerabilities from different sources like Debian
Security Tracker or RedHat Security Data. Each vul-
nerability is stored in Postgres. Clair works like static
analyzer, this means that it doesn’t need to run our con-
tainer to scan it but it persists different checks directly
into the filesystem of the image.

docker run -it -p 5000:5000 registry

CHAPTER 1. DOCKER SECURITY 43

With this command we are running a private registry
to use as a source for the image to scan

docker pull gianarb/micro:1.0.0

docker tag gianarb/micro:1.0.0

localhost:5000/gianarb/micro:1.0.0

docker push localhost:5000/gianarb/micro:1.0.0

Now that we pushed in our private repo the micro
image we can setup clair.

mkdir $HOME/clair-test/clair_config

cd $HOME/clair-test

curl -L https://goo.gl/2fcpra -o

clair_config/config.yaml

curl -L https://goo.gl/MzTrNL -o

docker-compose.yml

Modify HOME/clair config/config.yml and add the
proper source postgresql://postgres:password@postgres:5432?sslmode=disable

now you can run the following command to start post-
gres and clair:

docker-compose up

To make our test easier, we will use another CLI called
hyperclair that is just a client to work with this applica-
tion. If you are using Mac OS, you can follow the above
commands, if you are in another OS you can find the
correct url in the release page

curl -SSl https://goo.gl/8WlkpS > ~/hyperclair

CHAPTER 1. DOCKER SECURITY 44

chmod 755 ~/hyperclair

Now we have an executable in /hyperclair

~/hyperclair pull

localhost:5000/gianarb/micro:1.0.0

~/hyperclair push

localhost:5000/gianarb/micro:1.0.0

~/hyperclair analyze

localhost:5000/gianarb/micro:1.0.0

~/hyperclair report

localhost:5000/gianarb/micro:1.0.0

The generated report looks like this:

Hyperclair is just one of the implementations of clair,
you can decide to use it or build your own implementation
in your pipeline.

CHAPTER 1. DOCKER SECURITY 45

1.11 Docker Security Scanner

Docker Cloud and Docker Datacenter offer a similar fea-
ture called Docker Security Scanning. It is also available
in Docker Hub to evaluate from a security point of view
the status of the official images.

Docker Security Scanning is not only there to scan
and check signature and SHA but also to recognize com-
piled binaries that contains common vulnerabilities and
exposures (CVEs) for example if you image contains OpenSSL
with the heathbleed vulnerability Security Scanning will
notify you about this problem.

This feature is enabled in Docker Hub has beta, it
scans private images and report back to you all issues for
every tag.

To have a safe image is a good starting point to have
a secure environment. Sometime is not a problem of your

CHAPTER 1. DOCKER SECURITY 46

application but if you are starting from a base image that
it’s not well designed you inherit a set of vulnerabilities.
Be aware of them is important but Docker Security Scan-
ning notify you with a report similar to CVE-2014-9912
that contains information about the single vulnerability.
It means that you can try to update the package to a
new version if a fix is available.

CVE is an open vulnerabilities directory when a new
vulnerability is added into the system Docker Security
Scanning re-scan all the images involved to check if they
are safe or not.

We read about Clair previously, this service is not free
and it’s not opensource but it’s well integrated into the
powerful Docker workflow. If you have already Docker
Datacenter or if you are using Docker Hub with private
images it’s something that you can start to use right now.

1.12 Secret Manager

Modern applications use a lot of third party services to
ship particular features, these APIs require tokens and
credentials. All your services like MySQL, ElasticSearch
have credentials that you need to store in some safe place
and you also need to put them into the container.

It’s also important that a specific container has only
credentials and secrets that it needs to run a specific ap-
plication.

CHAPTER 1. DOCKER SECURITY 47

Probably your frontend application doesn’t care about
MySQL credentials like your backend application does
but it requires other tokens and vice versa. Splitting the
secrets is important because in the case of a vulnerability,
you won’t compromise all your tokens but only a subset
of them.

Every configuration manager like Chef, Puppet and
Ansible has their own security storage, Docker released
their own embedded solution in Docker 1.13.

This means that from Docker 1.13 in SwarmMode,
we can use a built-in security database to store and ship
inside a service encrypted files.

At the moment it supports only files and not environ-
ment variables because it’s not good practice and they
prefer to release only file support.

We have a new command ‘docker secret‘, it is the
entrypoint of the feature where we can create, inspect
and remove secrets.

First of all, we need to start a docker swarm cluster.
When we have it up and running we can create a secret
file and encrypt it in the Swarm:

echo ’{"username":"root", "password": "root"}’ >

~/secret-test.json

docker secret create myapp -f ~/secret-test.json

At this point, we can list all the secrets:

\begin{lstlisting}[language=Bash]

CHAPTER 1. DOCKER SECURITY 48

docker secret ls

ID Name Created

Digest Size

-- ---- -------

------ ----

njn6256a42476epuhh9awmk27 myapp 5 seconds ago

sha256:77cf 942

Or inspect one of them

docker secret inspect myapp

ID : njn6256a42476epuhh9awmk27

Name : myapp

Digest : sha256:77cf

Size : 942

Created : 2016-11-01T16:16:53.105065598Z

We can create a service with the option –secret se-
cret name:TARGET in our case the secret myapp will
be available in the container at /opt/credential

docker service create \

--name backend \

--secret myapp:/opt/credential \

--image gianarb/micro:1.2.0

We can add and remove a secret at runtime with the
command docker service update:

docker service update --secret-add foo

--secret-rm myapp

CHAPTER 1. DOCKER SECURITY 49

There are also other solutions like HashiCorp’s Vault
but at the moment there is no native support for ex-
ternal storage. There are a few side projects to mount
encrypted volumes with Vault and it is a great solution
if you are interested in managing secrets not only for
your swarm cluster but for infrastructure not managed by
Docker Swarm. One of them is docker-volume-libsecret
buildt by Evan Hazlett.

1.13 Immutability

Docker containers are in fact immutable. This means
that a running container never changes because in case
you need to update it, the best practice is to create a new
container with the updated version of your application
and delete the old one.

This aspect is important from a security point of view
also because you will have a fresh container after each
update and in the case of a vulnerability or injection
they will be cleaned during the update.

You have also an instrument to analyse the attacked
container with the command

docker diff <container_id>

This command shows the differences in the filesystem.
It supports 3 events:

A - Add D - Delete C - Change

CHAPTER 1. DOCKER SECURITY 50

In case of attack, you can commit the attacked con-
tainer to analyse it later and replace it with the original
image.

This flow is interesting but if you know that your
application doesn’t need to modify the filesystem you can
use –read-only parameters to make the fs read only or you
can share a volume with the ro suffix -v PWD:/data:ro.

Docker can’t fix the security issues for you, if your
application can be attacked by a code injection then you
need to fix your app but Docker offers a few utilities to
make life hard for an hacker and to allow you to have
more control over your environment.

During this chapter we covered some practices and
tools that you can follow or use to build a safe environ-
ment. In general, you need to close your application in
an environment that provides only what you need and
what you know. If your distribution or your container
has something that you don’t have under your control
or is unused then it is a good idea remove these dark
points.

Chapter 2

Biography

Figure 2.1: Thanks Ivan
Frantar for this photo.

I am Gianluca Arbezzano
(@gianarb) and I work as
Software Engineer in dif-
ferent languages: PHP,
Golang, JS and so on.

I am passionate about
automation and all the
DevOps philosophy during
my work experience I used
different cloud providers
like Amazon Web Service,
OpenStack, Digitalocean.

I have a good experience about different web layers I
worked on AngularJs to build mobile and web application
but also developed backend and scalable infrastructure

51

CHAPTER 2. BIOGRAPHY 52

but I am focused right know on the last one.
I started my experience as developer with open source

product and framework like Linux, PHP, Zend Frame-
work, Vagrant and for this reason I am actively involved
on different open source community Zend Framework,
Doctrine, PHP, Golang and Docker.

I am a Docker Captain, it’s a group of Docker ex-
perts and leaders in their communities who demonstrate
a commitment to sharing their Docker knowledge with
others (by. Docker Inc).1 This book is a way to share
my experience with the big and great community around
Docker, containers and distributed systems.

You can find me on Twitter2 and GitHub3, they are
my mainly social network, I am also a blogger4 and an
active and passionate speakers5.

Out of the web I am a volunteer involved on differ-
ent ONG and ONLUS, I like the idea to leave the world
better than you found it. I love ski, play football with
friend, have a chat in some nice pub with a pint, eat and
cook and son on.

1https://www.docker.com/community/docker-captains
2https://twitter.com/gianarb
3https://github.com/gianarb
4http://gianarb.it/blog
5http://gianarb.it/conferences

	Contents
	Docker Security
	Introduction
	Mutual TLS and Security by Default
	Content Trust
	Overlay Network
	Docker Bench Security
	Process Restriction and Capabilities
	Open Source
	Linux Kernel Security
	Cilium
	About your images
	Docker Security Scanner
	Secret Manager
	Immutability

	Biography

